求椭圆焦半径公式的详细推导过程

2025-12-15 05:13:15
推荐回答(3个)
回答1:

设M(m ,n)是椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的一点,r1和r2分别是点M与点F₁(-c,0),F₂(c,0)的距离,那么(左焦半径)r₁=a+em,(右焦半径)r₂=a -em,其中e是离心率。

推导:r₁/∣MN1∣= r₂/∣MN2∣=e

可得:r1= e∣MN1∣= e(a^2/ c+m)= a+em,r2= e∣MN2∣= e(a^2/ c-m)= a-em。

所以:∣MF1∣= a+em,∣MF2∣= a-em

回答2:

证明:

|PF1|²

=(x - c)² + y²

=[a²(x - c)² + a²y²]/a²

=[a²x² - 2a²cx + a²c² + a²y²]/a² 根据b²x² + a²y² = a²b² 

=[a²x² - 2a²cx + a²c² + a²b² - b²x²]/a²

=[(a²-b²)x² = 2a²cx + a²(b² + c²)]/a²

=[c²x² -2a²cx + a^4]/a²

=(a² - cx)²/a²

∴PF1 = (a² - cx)/a = a - (c/a)x = a - ex

同理可证:PF2 = a + ex

扩展资料:

椭圆的基本性质

1、范围:焦点在  轴上  ,  ;焦点在  轴上  ,  。

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)。

4、离心率:e=c/a或 e=√(1-b^2/a²)。

5、离心率范围:0

6、离心率越小越接近于圆,越大则椭圆就越扁。

7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。

回答3:

焦半径是啥