sin(3π+θ)=2sin(3π/2+θ) 求,sin^2(θ)+2sinθcosθ 原条件可化为: -sinθ= - 2cosθ tanθ=2 sin^2(θ)+2sinθcosθ=[sin^2(θ)+2sinθcosθ]/1=[sin^2(θ)+2sinθcosθ]/[sin^2(θ)+cos^2(θ) 分子分母同除以cos^2(θ)得: 原式=[tan^2(θ)+2tanθ]/[tan^2(θ)+1] =[4+4]/[4+1] =8/5