Sn=2/2+ 4/2²+ 6/2³+......+2n/2^n
(Sn)/2= 2/2²+4/2³+.......+(2n-2)/2^n+2n/2^(n+1)
两式对应相减得:(Sn)/2=2/2+2/2²+2/2³+........+2/2^n-2n/2^(n+1)
=(1-1/2^n)/(1-1/2)-2n/2^(n+1)
=2-1/2^(n-1)-n/2^n
得:Sn=4-1/2^(n-2)-n/2^(n-1)